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ABSTRACT

We developed multiple regression models and tree-
based (CART - classification and regression tree) mod-
els to predict fire return intervals across the Interior
Columbia River basin at 1-km resolution, using geo-
referenced fire history, potential vegetation, cover type,
and precipitation databases.  We weighted the models
based on data quality and performed a sensitivity analy-
sis of the effects on the models of estimation errors
due to lack of crossdating.  The regression models pre-
dict fire return intervals from 1 to 375 years for for-
ested areas, whereas the tree-based models predict a
range of 8 to 150 years.  Both types of models predict
latitudinal and elevational gradients of increasing fire
return intervals.  Although the tree-based models ex-
plain more of the variation in the original data, the
regression models are less likely to produce extrapola-
tion errors.  Thus, the models serve complementary
purposes in elucidating the relationships among fire
frequency, the predictor variables, and spatial scale.
They also demonstrate the integration of qualitative
and quantitative methods, and can be updated as bet-
ter fire history data become available.

INTRODUCTION

In this paper, we present statistical models for predict-
ing coarse-scale patterns of fire frequency in the Inte-
rior Columbia River basin (ICRB), using a fire history
database (hereafter FHDB) from the western United
States (Heyerdahl et al. 1995).  We use empirical meth-
ods to test the relationships between fire frequency and
both vegetation types and environmental gradients.
Our principal objectives are to evaluate the effective-
ness of different modeling strategies for extrapolating
model results to broad spatial scales, and to examine
the sensitivity of model predictions and interpretation
to uncertainties in the databases.  In the process, we
develop fire frequency coverages for forested areas of
the ICRB.  We discuss the applicability of our methods
to the problem of modeling coarse-scale fire effects and
potential improvements in models and databases that
would make broad-scale predictions more accurate.

METHODS

The ICRB contains those portions of the Columbia
River Basin inside the United States east of the crest
of the Cascade Mountains in Washington and Oregon,
and portions of the Klamath River Basin in California
and the Great Basin in Oregon, Utah and Nevada.  The
ICRB covers more than 58 million ha, 46% of which
is in forested vegetation.  Elevation of the forested ar-
eas ranges from 50 to 3700 m, and mean annual pre-
cipitation ranges from 130 to 3500 mm.  Agriculture,
grazing, and fire suppression are responsible for ma-
jor changes in vegetation in both forested and non-
forested areas during the last 50-60 years (Hann et al.
1997).

The ICRB Landscape Assessment (Hann et al. 1997)
and simulation modeling efforts to predict future veg-
etation (Keane et al. 1996b) produced a wealth of GIS
coverages, which provided a geographic template for
our model predictions, and a source of predictor vari-
ables.  Our response variable was fire frequency, ex-
pressed as the expected (mean) fire return interval
(FRI). From the FHDB, we extracted the following
variables for all fire history sites within the ICRB as
defined by the maps included in the integrated assess-
ment: 1) fire return interval (response variable: mean
= 50.7 years, range = 6-419 years), and 2) elevation
and geographic coordinates from an Albers projection
(predictor variables).

The fire history data vary in quality.  Most are not
accurately crossdated, and more than half of the re-
constructions use fewer than 10 trees.  Also, begin-
ning and ending dates vary, admitting possible con-
founding effects from the effects of different climatic
regimes and human activities.  The methods employed
for calculating fire frequency also differ, and include
point estimates, composite fire intervals (CFIs), and
natural fire rotation (NFR), or fire cycle computation
(Agee 1993, Johnson and Gutsell 1994).

We developed two model databases; the first had the
advantage of larger sample size, and the second the
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advantage of greater homogeneity: 1) “full data” in-
cluded all 192 sites within the ICRB at which fire fre-
quency had been estimated for an area of less than 40
ha (Heyerdahl et al. 1995 – Figure 1 and 2 “reduced
data” used a subset of the sites from the first set in
which fire frequency had been computed from CFIs
(the most common method) and from at least two trees.
The “full data” We employed the following temporal
standardization to minimize the confounding effects
of climatic variation and, specifically, fire exclusion
in the 20th century.  For all sites whose histories ex-
tended before 1700 and after 1920 (before the period
of successful fire suppression in the ICRB), and which
included fire dates, we recomputed FRIs based on the
years 1700-1920.  Sites for which this calculation was
impossible (i.e., no fire dates) were dropped.  The ex-
ception to this was sites with only two fires (e.g., one
fire in 1500 and another in 1919).  Sites with only one
tree were retained, but downweighted in the models.
Non-crossdated sites were also retained because they
were the majority of sites (157 of 192), but were the
basis of a sensitivity analysis of the effects of
crossdating errors on the models.  After the temporal
standardization, the full data contained 185 sites.  The
“reduced data” consisted of all sites from the full data
in which FRI had been computed by CFI from at least
two trees.  Only 90 sites fulfilled this criterion.

We extracted predictor variables from the ICRB (po-
tential natural vegetation [PVT]) and dominant cover
type [COV]) geographic databases, because we were
using the model to make predictions for the entire
ICRB.  Additional predictors were mean annual and
summer (June - September) precipitation over the years
1961-1990 (4-km resolution GRID coverage) for the
continental United States produced by the PRISM
model (Daly et al. 1994).  We then created a point cov-
erage in ARC-INFO of the fire history site locations in
the ICRB, using the Albers projection (Figure 1).

We expected the vegetation types to be important pre-
dictors of fire frequency, and therefore developed a
qualitative clustering procedure to assign numerical
values to them, based on the type of fire regime we
expected to be associated with each type.  Within each
classification, we ranked the vegetation types initially
according to what we expected to be their average FRIs.
We also assigned a “distance” between each pair of
adjacent types, representing qualitatively the ecologi-
cal distances, with respect to fire regime, between them.
The resulting hierarchical model was an ordered clas-
sification of vegetation types that can be viewed at sev-
eral levels of aggregation.  To minimize complexity,
we assigned only integer values to each vegetation type,

but we explored non-linear transformations of them
during model development (see below) to optimize their
predictive power.

We searched for optimal models of two types: 1) a
multiple regression of FRI on predictor variables, and
2) a tree-based (non-parametric) model of FRI on pre-
dictor variables (Breiman et al. 1984).  For both types
of models, the response variable was weighted in the
following ways: (1) Full data – sites that were
crossdated or had FRIs computed from 10 or more trees
were given full weight (1.0).  Remaining sites with
more than 2 trees were given a weight of 0.5.  Others
were weighted at 0.25. (2) Reduced data – sites that
were crossdated or had FRIs computed from 10 or more
trees were given full weight.  All others were weighted
at 0.5.

We tested combinations of the environmental variables
with the vegetation variables.  We then used backward
elimination to remove predictors that did not contrib-
ute significantly (� = 0.05) to the reduction in vari-
ance.  The response variable was transformed as nec-
essary to meet the normality assumptions of regres-
sion.  Once a model was selected, we compared the
output from robust regression to that from ordinary
regression.

To find the optimal transformation of the numerical
values for vegetation types, we compared a loge trans-
form to fitted exponents for the vegetation variables.
We used partially linear least squares (Bates and
Lindstrom 1986) to obtain the extra coefficient.  Tree-
based models are a non-parametric alternative to lin-
ear models for regression problems (Breiman et al.

Figure 1. Fire history sites in the interior Columbia
River Basin.  Many of the sites overlap at the reso-
lution of the geographic coordinates.
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1984).  A particular advantage of tree-based models is
that they can capture non-additive behavior and com-
plex interactions between variables (Clark and Pregibon
1992).  Our tree-based models were built from the same
model databases as the regression models.  We used an
adaptive estimation method (Breiman et al. 1984) to
minimize the complexity of the model (number of
branches and nodes) without sacrificing goodness-of-
fit, and then used a cost-complexity measure derived
by Breiman et al. (1984) to prune the tree.  Predictor
variables on which there were no partitions in the fi-
nal pruned model were thus eliminated.

For each variable in the final (tree-based or regres-
sion) models, we created a raster coverage (GRID – 1-
km resolution) with data values only at forested pix-
els.  We used the tree-based and linear regression mod-
els to predict the FRIs for the new data (all forested
pixels within the ICRB).  We then created four raster
coverages of predicted FRIs.

We used standard diagnostics, bootstrap estimates of
prediction error (Efron and Tibshirani 1993) for the
regression models, and 10-fold cross-validation
(Venables and Ripley 1994) for the tree-based models.
Because the purpose of our model was to extrapolate
local relationships to the regional scale,  we also pro-
duced statistical and graphical summaries of model
predictions at the 1-km scale.  We examined the distri-
bution of predicted FRIs from both models for each
vegetation type for obvious anomalies, using the out-
put maps and histograms of FRIs for each vegetation
type.  For example, we expected FRIs to be positively
correlated with latitude and elevation, and to observe
differences between types in mean and range.  We also
expected that most predicted FRI distributions for veg-
etation types would not display major discontinuities
or distinctly bimodal patterns.  This partly qualitative
procedure suggested which of the models would be
more robust to extrapolation.

We expected the principal source of error in both the
full and reduced datasets to be the lack of accurate
crossdating for many of the reconstructions that used
fire scars.  From rough calculations on simulated in-
crement cores and discussions with fire ecologists, we
concluded that a typical error would be to underesti-
mate, or less commonly overestimate, fire frequency
by a factor of two.  To estimate the effects of this and
similar errors on the parameters and broad-scale be-
havior of the models, we simulated a correction factor
that could be applied to non-crossdated FRI estimates
in the fire history database to account for potential
crossdating errors.  This correction factor was a ran-

dom variable, and was calculated differently in two
scenarios.

Scenario I – “lumpers.”  This scenario assumes that
estimates of FRI will be high because researchers would
tend to adjust fire dates from different samples to be
more synchronized.  After some experimentation, we
selected the following correction factor:

K1 = 1/ [1 + 1/(U0,10)
1/2]

where K1 is the correction factor, and U0,10 is a uni-
form random variate on the interval (0,10).  The “cor-
rected” values of FRI (original value multiplied by K1)
have a maximum (and mode) of .76�original and a
mean approximately .5�original.

Scenario II – “lumpers” and “splitters.”  This scenario
assumes that errors will be equally likely on either side
of the original.  The correction factor is:

K2 = �20,10 or 1/�20,10 with probability = .5

where �20,10 is a gamma random variate with shape
parameter = 20, rate parameter = 10, expected value =
2, and skewness � 0.44.  Corrected FRIs would be thus
higher or lower than originals with equal probability.

Because the correction factor is a random variable in
both scenarios, every correction is unique, and every
realization of a set of corrections applied to the FRIs is
also unique.  We applied each scenario 25 times to
both regression models and both tree-based models,
correcting only FRIs under 30 years from non-
crossdated fire scars (Heyerdahl et al. 1995), and stor-
ing the parameter estimates and their p-values, the fit-
ted values, and R2 (regression models) and the propor-
tional reduction in deviance (tree-based models).  We
compared these data to output from the original four
models, and randomly selected realizations (of regres-
sion models only) to compare to model predictions at
the regional scale.

RESULTS

For the full data, the best multiple regression model
uses four predictor variables (Table 1), is highly sig-
nificant (n=182, p < 0.0001), and has reasonable ex-
planatory power (R2 = 0.44).  The model for the re-
duced data uses three predictors (Table 1), is also highly
significant (n=87, p < 0.0001), and has better explana-
tory power (R2 = 0.57).  Signs of coefficients, except
for interaction terms, are positive, thus an increase in
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summer precipitation, latitude, elevation, or the nu-
merical value of COV increases predicted FRI. The
range of fitted values for FRI is 8-87 years for the full
data, and 3-124 years for the reduced data.  The corre-
lation (Pearson’s R) between fitted values for the two
regression models (on sites common to both) was .95.

The tree-based model for the full data produced 16
distinct predicted values, ranging from 8 to 131 years.
The model uses the same four variables as the full data
regression model.  The primary partition is on AlbersN,
which accounted for 49% of the total reduction in de-
viance.  The number of sites represented by terminal
nodes ranges from 5 to 26.  For the reduced data, there
are only 10 distinct predicted values, ranging from 11-
150 years.  The primary partition is also on AlbersN,
accounting for 70% of the total reduction in deviance.
The number of sites represented by terminal nodes
ranges from 5 to 25.  Proportional reduction in devi-
ance from both tree-based models (roughly equivalent
to R2) is 0.77; hence, they have greater explanatory
power, in the statistical sense, than the regression
models.

Parameter estimates in the regression models changed
little (maximum change less than 1% for any param-
eter) in either Scenario I or Scenario II.  For the full
data model, the highest fitted values from Scenario I
were slightly lower on average (10%) than for the “true”
model.  For the reduced data model, the lowest fitted
values from Scenario II were 50% lower on average
than for the true model.  Other extrema of fitted values
differed less than 1% from the true models.

The tree-based models changed very little in either
scenario.  Primary partitions remained on AlbersN,
PRDs changed only 1-5%, and no major structural
changes occurred.  Fitted values at terminal nodes
changed less than 10%, and splits on the predictors
were consistent.

The total number of regional-scale predictions from
the models is three orders of magnitude greater than
the number of sample sites.  The regional predictions
cover a larger elevational range (49-3713 m) than the
model database (727-2550 m).  There are eight COVH
types in the regional (forested) coverage that were not
represented in the model database, although these ac-
count for less than 8% of the total pixels.  Predictions
of FRI from the regression models range from 1 to 375
years at the regional scale for the full data model, and
2 to 290 years for the reduced data model.  Predictions
from the tree-based models are restricted to the 16 (full
data) and 10 (reduced data) discrete values at the nodes
of the respective trees.

Viewed regionally, predictions from the regression
models reveal latitudinal gradients (Figure 2).  The
gradient is the dominant feature of the reduced data
model (Figure 2a); the full data model predicts that
the longest FRIs will be in the northern Cascade Moun-
tains, Washington, the Wind River Mountains, Wyo-
ming, and in the northwestern corner of Montana (Fig-
ure 2b).  Predictions from the tree-based models dis-
play distinct horizontal bands in addition to the latitu-
dinal gradient (Figure 3).  These bands do not corre-
spond to known biotic or abiotic gradients and are ar-
tifacts of the dominance of AlbersN in the partitioning
process and of the limited number of unique predicted
values (16 and 10).

At the regional scale, the predicted FRIs from realiza-
tions in the sensitivity analysis (RSAs) closely track
those from the corresponding regression model.  Ex-
cept for a few extreme outliers (< 0.1% of pixels), dif-
ferences (“true” model – RSA) are less than 10 years
for all comparisons.  Proportional differences are much
greater in cover types predicted to have short FRIs. As

Model Coefficient Value
(SE)

Pr(>|t|)

Full data Intercept -2.118
(0.823)

0.0109

loge(COV) 0.153
(0.065)

0.0219

AlbersN 3.082e-6
(4.792e-7)

<0.0001

Summer
precip.

1.242e-2
(3.275e-3)

0.0002

Elevation 2.755e-3
(5.257e-4)

<0.0001

Precip./elev. -9.726e-6
(2.418e-6)

<0.0001

Reduced
data

Intercept -13.915
(4.399)

0.0022

AlbersN 8.173e-6
(2.851e-6)

0.0053

Summer
precip.

0.081
(0.017)

<0.0001

Elevation 9.802e-3
(2.824e-3)

0.0008

Precip./elev. -4.679e-5
(1.298e-5)

0.0005

Table 1. Parameter estimates for the regression
models.  Response variable in full data uses a loge
transform, and reduced data uses a square root
transform.
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Regression model
(reduced data)

Figure 2. Output maps of predicted fire return in-
tervals from the regression models, collected into
five categories.

Figure 3. Output maps of predicted fire return in-
tervals from the tree-based models, collected into
five categories.

ment and assist coarse-scale modeling efforts in the
region.  In contrast to the coverages from the ICRB
assessment, which delineate five broad ranges of fire
frequency (Morgan et al. 1996), our models produce
estimates of fire frequency at the resolution of one year.
Also in contrast, the ICRB models assigned fire re-
gime classes to cover types (Hann et al. 1997), whereas
our models predict fire frequency principally from en-
vironmental and geographic variables.

The negative coefficient for the elevation and precipi-
tation interaction in both regression models indicates
that at higher elevations, FRI is less strongly corre-
lated with precipitation than at low elevations.  For
example, the models predict that the differences in FRI
between low-elevation ponderosa pine forests (drier)
and low-elevation cedar-hemlock forests (wetter) would
be proportionally greater than between high-elevation
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expected, RSAs from Scenario I consistently predict
shorter FRIs in ponderosa pine systems (32% of total
pixels) than the regression models, because in the
“lumpers” scenario, FRIs for these sites in the fire his-
tory database were assumed to have been overestimated.
However, this consistent bias is not apparent for “Inte-
rior Douglas-fir”, the other common vegetation type
for which many FRIs were reduced in the RSAs, Sce-
nario I.

DISCUSSION

The models reveal highly significant relationships be-
tween fire frequency and the predictor variables.  Be-
cause estimates of fire frequency are necessary for
modeling fire effects and succession, the data repre-
sented by the output maps represent a wealth of new
information, which will complement the ICRB assess-
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whitebark pine forests (drier) and high-elevation moun-
tain hemlock forests (wetter).

The tree-based and regression models serve comple-
mentary purposes in understanding the relationships
among FRI and the predictor variables.  The tree-based
models explain more variation in the response, but
when extrapolated to the regional scale, they produce
anomalous results.  The inability of tree-based models
to predict new values is also a significant drawback in
extrapolations of this magnitude.  Conversely, the re-
gression models, although they have weaker (statisti-
cal) explanatory power at the scale of the model data-
base, provide a simple and robust method of predic-
tion.  Thus, although the tree-based models show a
better statistical fit, only the regression models are suit-
able for broad-scale predictions.

Of the two regression models, the reduced data model
has a more homogeneous response variable and pro-
duces more homogeneous predictions at the regional
scale (Figure 2a).  The full data model incorporates
vegetation, albeit weakly, and isolates geographic ar-
eas of long FRIs independent of the latitudinal gradi-
ent (Figure 2b).  Sensitivity analyses suggest that er-
rors in computing the response variable would be
slightly greater for the full data, and proportionally
greater in systems with short FRIs.  Predictions from
the reduced data model are probably more accurate in
systems with short FRIs, because errors from lack of
crossdating are less severe, but estimates of FRI for
low fire frequency systems are probably better from
the full data model.  The ICRB assessment model does
not appear to produce any latitudinal gradient, prob-
ably because it is focused on vegetation types and broad
classes of fire frequency.  Our full data model displays
both the broad gradient and isolated areas of high FRIs,
while our reduced data model displays only environ-
mental and geographic gradients.

The models could be improved by additional fire his-
tory information for the ICRB, particularly if data col-
lection and interval estimation were standardized, pro-
viding better confidence to FRI estimates in model
databases.  Crossdating all tree-ring records would sig-
nificantly improve the accuracy of the response vari-
able.  Some fire history studies should be initiated spe-
cifically to improve regional scale models – that is,
with non-local objectives.  A sparse grid of fire history
sites, while not providing detailed local information,
could include more vegetation types and be amenable
to rigorous quantitative methods of spatial aggrega-
tion (Dutilleul 1993, Legendre 1993, Rossi et al. 1993).

The models have implications for local fire manage-
ment, simulation modeling, and ecological scale con-
cepts (Peterson and Parker 1998).  The output maps
provide a coarse-scale component to local databases
and can be helpful in estimating characteristics of lo-
cal fire regimes, particularly in the absence of local
fire history information.  The extent to which the con-
tagious nature of fire can be incorporated into a coarse-
scale fire frequency model is unknown.  We were un-
able to discern spatial autocorrelation among the sites
in the existing fire history database, but new sampling
designs for fire history reconstructions might address
this problem.  For example, if grids were established
to measure point FRIs in different systems,
autocorrelation structure could be more easily deter-
mined, and interpolated values could be compared to
predictions from a model that assumes independence.

Ecosystem management is being applied under hier-
archical frameworks at multiple spatial scales.  In-
formed decisions are needed at increasingly broad spa-
tial scales, but in most cases, detailed quantitative data
are not, and may never be, available (McKenzie et al.
1996, Lertzman and Fall 1998, McKenzie 1998).  In-
tegration of existing databases, complementary use of
qualitative and quantitative methods, resolution of scale
incompatibilities in spatial data, and more efficient
approaches to data collection will improve our under-
standing of broad-scale interactions among fire, veg-
etation, and the physical environment.
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